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The elastic scattering at low energy of metastable argon atoms with internal angular momentum J ) 0 and
2 by dielectric nanospheres is investigated. The differential cross sections are calculated for both isotropic
and anisotropic interactions. A polarization effect is clearly evidenced. The possible use of a metastable atom
beam as a probe of an ensemble of nanospheres deposited on a passive substrate is examined.

1. Introduction

The interaction between an atom and a solid surface at mean
distance (d < 200 nm), i.e., in absence of any retardation effect,
is of the van der Waals (vdW) type. For atoms possessing an
internal angular momentum J, as metastable argon atoms
Ar*(3P2), this interaction combines a scalar term and a quadru-
polar term.1 The former (dominant) term is responsible for elastic
collisions with the surface, whereas various inelastic processes
are induced by the latter one.2 In the low atomic velocity domain
considered here (a few tens of meters per second), the internal
degrees of freedom of the solid are not involved and excitation
processes such as surface phonons can be ignored. Similarly
nonadiabatic atomic transitions can be neglected. Under such
conditions, the expression of the interaction is readily obtained
using the electrostatic image method: it is simply the interaction
between the instantaneous atomic dipole D and its instantaneous
image in the solid surface. When the solid surface is planar or
more generally when its radius of curvature a is much larger
than the range of the interaction (a few nanometers), one gets
the well-known vdW interaction in 1/d3, for both scalar and
quadrupolar terms. This is no longer the case when the solid is
a sphere of a nanometric size. Such titanium oxide nanospheres,
of radius a ≈ 2.5 nm, deposited on a planar solid substrate,
have been recently produced.3 The elastic scattering of meta-
stable atoms by such spheres, which mainly involves the scalar
part of the vdW potential, is expected to provide us with
information about the interaction itself, the size of the spheres,
and the dispersion of their diameters as well as their 1D or 2D
ordering on the substrate plane. Actually, the elastic problem
is relatively simple only in the case of atoms having a zero
angular momentum, such as Ar*(3P0) (section 2). For atoms with
J * 0, an anisotropic diagonal interaction must be considered.
Under such conditions, the treatment of the collision becomes
rather similar to that of atom-molecule collisions (section 3).
The most intricate problem arises when inelastic processes are
involved. Indeed it has been shown4 that, in the presence of a
static magnetic field B, the quadrupolar part of the vdW
interaction is responsible for so-called van der Waals-Zeeman
transitions, i.e., transitions from a given Zeeman sublevel M to
another one M′. Theoretical treatments of such transitions have

been already proposed in the case of a solid target of a large
curvature radius (a few micrometers or more). They use either
the sudden5 or the Landau-Zener6 approximation. In both
approaches, the normal to the surface was considered as fixed
for rectilinear atomic trajectories grazing the surface at small
distances. This was justified because of the very short range of
distances (d < dmax ) 2-3 nm) within which inelastic processes
are expected to occur. This is no longer the case for target
spheres the radius of which is comparable to dmax and the whole
treatment must be reconsidered.

Another important difficulty comes from the fact that the
nanosphere is deposited on a planar solid. Even if this solid is
assumed to be totally passive, the geometry of the scattering is
fundamentally modified. Moreover, in the presence of several
deposited spheres, the mutual distances of which are small,
multiple scattering effects are likely to occur. A considerable
extension should be given to the model to include these facts.
The scope of the present paper will not be to treat these questions
but rather to solve the simple scattering of a planar atomic wave
by a single nanosphere in free space.

2. Elastic Scattering by an Isotropic Potential

For atoms having a zero internal angular momentum, such
as metastable Ar*(3P0) atoms, the vdW interaction with a
dielectric nanosphere, the permittivity ε of which is much larger
than 1, is readily derived from the electrostatic image method7

where r is the distance to the center of the sphere and C3 is the
standard vdW constant obtained with a planar solid. Indeed,
setting r ) a + d, one recovers, for a . d, the well-known
form V ≈ -C3/d3. On the other hand, for r . a, one gets VvdW(r)
≈ -8 C3 a3/r6, as expected for the interaction between
metastable and ground-state atoms. Actually at short distances
(d , a), atom and solid- electronic orbitals overlap, which
results into a repulsive interaction in d-9. At the same time,
this overlap induces a strong quenching of metastable atoms.
This quenching will be ignored since it has a negligible effect
on the scattering, except at angles close to π (front collisions).
Then the total potential takes the form

† Part of the “Vincenzo Aquilanti Festschrift”.
* Corresponding author, jacques.baudon@univ-paris13.fr.

VvdW(r) ) -8C3( a

r2 - a2)3
(1)
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For metastable argon atoms, C3 ) 3.456 × 105 atomic units
(au), C9 ) 4.345 × 1010 au.8 Calculations will be carried out
for an initial atomic velocity V0 ) 56 m/s, i.e., a de Broglie
wavelength λ0 ) 3.4037 au ) 0.18 nm, and a sphere of radius
a ) 48.26 au ) 2.5 nm. Such a low velocity is obtained using
a Zeeman slower operating on Ar*(3P2) atoms with a laser beam
at λ ) 811.5 nm,9 these atoms being then transferred to the 3P0

state by optical pumping. Assuming an incident atomic plane
wave, the standard scattering amplitude at angle θ is given by10

where k0 ) 2π/λ0 and Pl is the Legendre polynomial. Owing to
the relative shortness of the wavelength, phase shifts, δl are
calculated using the semiclassical expression

where U(r) ) (2m/ p2) V(r), m being the atom mass and r0(l)
the distance of closest approach for angular momentum l. The
resulting differential cross section σ0 (θ) ) |f0(θ)|2 is shown in
Figure 1. It corresponds to the scattering by an isolated sphere.
In fact the sphere stands over a planar substrate and the incident
atomic plane wave propagates in a direction making some angle
θi with this plane. If the substrate is assumed to be passive,
then its effect is simply to cancel the scattered intensity at some
geometrically defined directions, e.g., in the incidence plane,
the intensity cancels for θ < θi. This explains why a rainbow
effect expected around θ ) 1.6 rad is not observed. In Figure
1, in order to get a preliminary account of the effect of the
substrate on which the sphere is deposited, rapid oscillations
and supernumerary rainbow have been artificially canceled by
suppressing the interference between positive and negative angle
contributions. Presumably for this reason, cross sections cal-
culated with different sphere radii ranging from 2 to 3.3 nm
show a weak dependence on a.

For N identical spheres randomly distributed on the plane,
the scattered intensity is simply multiplied by N, provided that
their mutual distances are large enough to make negligible
multiscattering phenomena. On another hand, when N × N
identical spheres are distributed over a regular 2D grating of
period b along both axes η and � (the third 	-axis being normal
to the plane), the scattering amplitude is the single-sphere one
multiplied by a “grating factor” G. Let (θ, 
) be the angular
coordinates (around the � axis) of the final momentum direction,
those of the initial one being (θi, 0), and φ1 ) k0 b sin θ sin 
,
φ2 ) k0 b (cos θ - cos θi). One easily gets: G ) G1G2 with
G1,2 ) exp[iφ1,2/2] sin[(N + 1)φ1,2/2]/sin(φ1,2/2). The visibility
of the G factor readily gives b and an estimate of the ordering
of the nanospheres over the substrate.

3. Elastic Scattering by an Anisotropic Potential

Coupled Equations in the General Case. Let us consider a
plane wave, in exp(ik0z), of metastable atoms (Ar* (3P2),

polarized in Zeeman state M0 ) +2 with respect to some fixed
axis (in fact a magnetic field B), incident on a nanosphere of
radius a. In the magnetic field, at an infinite distance from the
sphere, the internal atomic energies depend on M through the
term -gµBBM, where g is the Landé factor and µB the Bohr
magneton. Consequently, only those collisions in which the final
value M′ of the magnetic number remains equal to M0 are elastic.
Inelastic collisions with M′ * M0 involve so-called “van der
Waals-Zeeman” (vdW-Z) transitions.4 In fact the treatment of
the collision problem includes both elastic and inelastic channels.
For the sake of simplicity we shall assume that (i) the incident
z axis is collinear with B, (ii) the sphere material is either a
perfect metal, or a dielectric with a permittivity ε . 1. Point
(i) could be rather simply generalized: it is a matter of
decomposition of the plane wave. To extend point (ii) is a more
intricate matter, but it is not absolutely necessary in our case
because of the rather high permittivity of the material used here
(for titanium oxide, ε ≈ 7).

The atomic motion being described by a wave function
expanded over Zeeman states |M〉, namely |Ψ〉 ) ∑M′ΦM′(r) |M′〉,
the stationary Schrödinger equation for total energy E is

where V is the interaction operator. According to the electrostatic
image method applied to a perfect metallic sphere, the nonre-
tarded van der Waals interaction takes the form5

where, as before

The novelty is the presence of a quadrupolar term, proportional
to the constant η, in the vdW interaction. For Ar*(3P2) atoms
this constant is η ≈ ∼C3/10. Here Jr is the radial component of
J, J 2/3 ) 2 and B. J ) BJz. The matrix elements of V in the
|M〉 basis set (referred to the z axis) are

V(r) ) -8C3( a

r2 - a2)3
+ C9(r - a)-9 (2)

f0(θ) ) 1
2ik0

∑
l)0

∞

(2l + 1)[exp(2iδl) - 1]Pl(cos θ)

(3)

δl ) ∫r0(l)

∞ ([k0
2 - U(r) - (l + 1

2)2
/r2]1/2

- k0) dr +

π
2 (l + 1

2) - k0r0(l) (4)

Figure 1. Differential elastic cross section σ0 (in au, log scale) for the
isotropic potential (see text), as a function of the scattering angle θ.
The index number in abscissa corresponds to 80 times θ (in rad) (index
number 251 corresponds to θ ) π).

(- p2

2m
∆r + V_)|Ψ〉 ) Ε|Ψ〉 (5)

V_ ) -f(r)[C3 + η
16

(Jr
2 - J2/3)] + gµBB · J (6)

f(r) ) 8a3(r2 - a2)-3 (7)
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The matrix elements of Jr
2 are given in ref 5 as functions of the angle R between the direction of B and that of the vector position

r of the point under consideration. Note that r plays the role of the normal to the surface of the sphere. Here it can no longer be
considered as a fixed direction. Hence R becomes a Variablesan ordinary spatial coordinatesof the problem. Consequently the
matrix elements of V, even the diagonal ones, behave as anisotropic potentials. The matrix elements of Jr

2 can be written (M, M′
being ordered as -2, -1, 0, +1, +2)

where P2 is the Legendre polynomial P2(cos R). It should be noted that remaining nonzero terms in sin R cos R can be expressed
as well with Legendre polynomials, using

With (8), eq 5 can be written

In the following, all incident atoms will be assumed to be initially polarized in Zeeman state |M0 ) +2〉. In this special case, eq 9
becomes1

(This corresponds to the incident wave. One has to be aware that, in the presence of couplings with some other states M′, one will
have also to consider a “master equation” for ΦM′ similar to (10), but containing a diagonal potential term proportional to 〈M′|Jr

2|M′〉
and a total energy E - gµBBM′.) Note that the maximum magnitude of the anisotropic part of the diagonal potential, (η/8)f(r), is
relatively small compared to the isotropic one.

Radial Equations in the Elastic Case.

General Expression. When all couplings to sublevels M′ * +2 are ignored, the collision is purely elastic. Nevertheless it is
governed by a diagonal anisotropic potential containing a term in P2(cos R), able to induce couplings among the partial waves
associated with various values of the angular momentum l. This point is easily understood when considering an atom with its
spin along a fixed direction (bold arrows in Figure 2), passing in the vicinity of a spherical target: the interaction is expected
to depend not solely on the distance r but also on the angle R between r and the z axis. When the interaction is able to move
the spin out of the z direction (dotted arrows in Figure 2), this means that M-M′ transitions (vdW-Z inelastic transitions)
occur and that the collision is partly inelastic.11

Having in view a separation of variables r and R (the azimuthal angle around z is not involved), one expands Φ2(r) over Legendre
polynomials Pl(cos R)

where radial wave functions are r-1
l(r). In the purely elastic case, eq 11 gives

〈M|V_ |M′〉 ) [gµBBM - f(r)(C3 - η/8)]δΜΜ′ - f(r)(η/16)〈M|Jr
2|M′〉 (8)

2 + 2Ρ2 -3 sin R cos R �2
3

(1 - Ρ2) 0 0

-3 sin R cos R 2 - Ρ2 -�3
2

sin R cos R 1 - Ρ2 0

�2
3

(1 - Ρ2) -�3
2

sin R cos R 2 - 2Ρ2 �3
2

sin R cos R �2
3

(1 - Ρ2)

0 1 - Ρ2 �3
2

sin R cos R 2 - Ρ2 -3 sin R cos R

0 0 �2
3

(1 - Ρ2) 3 sin R cos R 2 + 2Ρ2

(9)

P2
(1(cos R) ) �15

4π
sin R cos R

[- h2

2m
∆r - f(r)(C3 - η/8 + (η/16)〈M|Jr

2|M〉)]ΦM - f(r)(η/16) ∑
M′*M

〈M|Jr
2|M′〉ΦM′ ) (E - gµBBM)ΦM (10)

[- h2

2m
∆r - f(r)(C3 + (η/8)Ρ2(cos R))]Φ2 - f(r)(η/16) ∑

M′*M

〈2|Jr
2|M′〉ΦM′ ) (E - 2gµBB)Φ2 (11)

Φ2(r) ) ∑
l

r-1
l(r)Ρl(cos R)
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where k0
2 ) 2mE/ p2 (squared incident wavenumber), U0 )

(2m/ p2) [-f(r) C3] (isotropic part of the potential), U2(r) )
–(2m/p2)(η/8)f(r) (anisotropic part of the potential) and
c[l,l′,2; 0,0,0] 2 is a squared 3j-coefficient. This coefficient
differs from zero only when l′ ) l or l ( 2 with

This (slightly) simplifies the expression of diagonal and off-
diagonal parts in (12a) into

From (9) it is seen that for l g 2, 
l is coupled to 
l-2 +

l+2. Introducing a column matrix Φ the elements of
which are the 
l-s, eq 11 can be written in a more compact
form

where 1 is the unitary L × L matrix (L being some arbitrary
high upper value of l) and Ue(r) the effective potential matrix.
The main remaining problem is that Ue(r) contains off-
diagonal elements which mutually couple the radial equa-
tions.

Elimination of Static Couplings. Fixing the value of L (it
turns out that L ∼ 100 is sufficient), one can diagonalize
Ue(r) into E(r) ) C-1(r)Ue(r)C(r), where C is an appropriate
orthogonal L × L matrix. This operation gives at the same
time eigen-values el(r) and eigen-vectors. This is equivalent
to change the radial functions 
l into

or inversely

Note that both dll′(r) and cll′(r) coefficients tend to δll′ when
r f ∞. Owing to this diagonalization, couplings due to
potential terms cancel. Unfortunately, as usual, because of
the r dependence of coefficients cll′, dynamical couplings of
the type 〈ψl|(cll′)′(′′)|ψl′〉, where ′(′′) indicate r derivatives,
appear. Coefficients cll ′depend on r grosso modo as the
potentials do. In the JWKB approximation where the
potentials are assumed to vary slowly at the wavelength scale
(k0 |c′| and k0

2 |c′′| , 1), the latter couplings can be ignored,
which leads to simplified “ordinary” radial equations

which can be solved as before (section 2, eqs 3 and 4). In
the present case, it turns out that, for r < 80 au, the el values
differ from the diagonal terms of Ue(r) only for values of l
smaller than 70. At larger values of r, the el values are almost
identical to the diagonal terms. Finally the scattering
amplitude f1(θ) and the related differential cross section σ1(θ)
are derived. This differential cross section is shown in Figure
3 as a function of the scattering angle. It is seen that it
significantly differs (by a factor of about 30) from that related
to the isotropic potential, σ0, essentially at angles θ > 1.5
rad (Figure 4). As above (section 2), interference terms
between positive and negative angle contributions have been
artificially canceled. Correlatively a rather weak dependence
of both σ1 and the ratio σ0/σ1 on the sphere radius is obtained.

4. Conclusion

A beam of moderately slow metastable atoms (velocity of a
few tens of meters per second) appears to be an efficient probe
usable in the characterization of nanospheres deposited on a
passive planar substrate. From the angular width of diffraction
patterns, size and size dispersion can be derived. Similarly, it
may be expected that constants (C3, C9) of the interaction can
be determined from the differential cross sections. The ordering
of nanospheres, when they are more-or-less well organized over
a 2D grating, can be derived from the contrast of the corre-
sponding “grating factor”, at least if their mutual distances is

Figure 2. Scheme of a classical collision of atoms polarized along
the incident axis (z or B) with a nanosphere. The atomic spin is
represented by a black arrow (elastic collision) or by a dotted arrow
(transitions among magnetic Zeeman states M).

Figure 3. Differential elastic cross section σ1 (in au, log scale) for the
anisotropic potential (see text), as a function of the scattering angle θ
(same scale as in Figure 1). The effect of anisotropy is seen at angles
larger than 1.5 rad.


l′′ + [k0
2 - l(l + 1)/r2 - U0(r)]
l -

2U2(r) ∑
l′

c[l, l′, 2;0, 0, 0]2
l′ ) 0 (12a)

c[l, l, 2;0, 0, 0]2 ) l(l + 1)/[(2l - 1)(2l + 1)(2l + 3)] )
b(l)

c[l, l,(2, 2;0, 0, 0]2 ) 9(l + 1)(l + 2)/[(2l + 1)(2l +
3)(2l + 5)] ) 9b(l + 1)


l′′ + [k0
2 - l(l + 1)/r2 - U0(r) - 2b(l)U2(r)]
l -

18U2(r)b(l + 1)(
l-2 + 
l+2) ) 0 (12b)

Φ′′� + [k0
21_ - Ūe(r)]Φ_ ) 0 (13)

Ψl ) ∑
l′

dll′(r)
l′


l ) ∑
l′

cll′(r)Ψl′

ψl′′ + [k0
2 - el(r)]ψl ) 0 (14)
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large enough to avoid any multiscattering phenomena, these
latter phenomena being observable by comparing more or less
compact deposits. Other possible targets are helium nano-
dropletsseventually seeded with extra moleculessdeveloped
by Toennies and co-workers.12 Polarization effects due to the
anisotropic part of the interaction appear to be observable despite
their smallness. The presence of a static magnetic field (typically
a few tens of gauss), needed as a reference axis, is expected to
induce cocalled van der Waals-Zeeman transitions among
magnetic sublevels with a significant probability. Such transi-
tions, which have not been investigated in the present paper,
are nevertheless worth analyzing insofar as (i) they appear to
be an extension of previously observed effects4 to the case of
surfaces of very small curvature radii, (ii) they are the analogue

of polarization or spin effects occurring in thermal collisions
between metastable atoms with spin (namely, Ne*(3P2) atoms)
and ground-state atoms.13 To treat this problem, it will be needed
to solve the full system of coupled equations given by (11). It
should be also noted that polarization effects, even in the sole
case of elastic scattering, should provide us with some informa-
tion about the shape of imperfect “nanospheres”.
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